$0+0$	$1+0$	$2+0$
$1+1$	$3+0$	$2+1$
$4+0$	$2+2$	$3+1$
$5+0$	$4+1$	$3+2$
$6+0$	$5+1$	$4+2$
$3+3$	$7+0$	$6+1$
$5+2$	$4+3$	$8+0$

2	1	0
3	3	2
4	4	4
5	5	5
6	7	6
8	7	7

$7+1$	$6+2$	$5+3$
$4+4$	$9+0$	$8+1$
$7+2$	$6+3$	$5+4$
$10+0$	$9+1$	$8+2$
$7+3$	$6+4$	$5+5$

White $=$ add 0 (the $1^{\text {st }}$ number doesn't change)
Blue = add 1 (one more than the $1^{\text {st }}$ number)
Grey = add 2 (two more than the $1^{\text {st }}$ number)
Yellow = double
Green = near double
Pink = more tricky

8	8	8
9	9	8
9	9	9
10	10	10
10	10	10

$0-0$	$1-0$	$1-1$
$2-0$	$2-1$	$2-2$
$3-0$	$3-1$	$3-2$
$3-3$	$4-0$	$4-1$
$4-2$	$4-3$	$4-4$
$5-0$	$5-1$	$5-2$
$5-3$	$5-4$	$5-5$

0	1	0
0	1	2
1	2	3
3	4	0
0	1	2
3	4	5
0	1	2

$6-0$	6-1	6-2
$6-3$	$6-4$	6-5
$6-6$	$7-0$	$7-1$
$7-2$	$7-3$	$7-4$
$7-5$	$7-6$	$7-7$
$8-0$	$8-1$	$8-2$
$8-3$	$8-4$	$8-5$

4	5	6
1	2	3
6	7	0
3	4	5
0	1	2
6	7	8
3	4	5

| $8-6$ | $8-7$ | $8-8$ |
| :---: | :---: | :---: | :---: |
| $9-0$ | $9-1$ | $9-2$ |
| $9-3$ | $9-4$ | $9-5$ |
| $9-6$ | $9-7$ | $9-8$ |
| $9-9$ | $10-0$ | $10-1$ |
| $10-2$ | $10-3$ | $10-4$ |
| $10-5$ | $10-6$ | $10-7$ |

0	1	2
7	8	9
4	5	6
1	2	3
9	10	0
6	7	8
3	4	5

White $=$ subtract 0 (the $1^{\text {st }}$ number doesn't change)
Blue $=$ subtract 1 (one less than the $1^{\text {st }}$ number)
Grey = subtract 2 (two less than the $1^{\text {st }}$ number)
Yellow = subtract itself always leaves 0
Green = subtract the next door neighbour number always leaves 1
Red = take away half the number leaves the other half
Purple $=$ finger calculation - create the $1^{\text {st }}$ number using 5 fingers on one hand, the rest on the other hand subtract one part of the calculation
Orange $=$ the difference between the two numbers is 2 , so the answer is 2 .
Pink $=$ more tricky

Activities

- Sort the calculations into those which make the same amount. Can we find a pattern?
- Sort the cards into calculations we know, calculations we can work out quickly, calculations we need to practise more often.
- Flash the calculation - how quickly can we answer it (answer on the back).
- Pairs/ Pelmanism: Lay the cards out with the calculation showing. Find two which have the same matching answer (turn over to check) e.g. $5+1$ matches to $4+2$ because they both equal 6 .
- Pick a card - show the child the answer and give clues to help them guess the calculation e.g. I'm showing you 5 , the question is a take-away and it has a 7 at the beginning, what is the calculation? (7-2). Rephrase if necessary e.g. 7 take-away something is 5 . Use fingers or objects for support to find the missing number.
- Bingo 1: Use the number side to play bingo. Each player lays out 6 numbers (answers). Bingo caller calls out a calculation. If you have the answer, cover it up, the first person to cover up all their numbers calls bingo and is the winner.
- Bingo 2: Each player lays out 6 calculations. Bingo caller calls out a number (answer). If you have a calculation, which makes that answer, cover it up, the first person to cover up all their calculations calls bingo and is the winner.

